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- Many of the difficulties associated with previous geometric representations
‘?‘ are overcome with the construction of a new coordinate system which is
especially tailored to the numerical simulation of viscous flows through
& cascade of airfoils., The system consists of coordinate loops surrounding
" the airfoil and radial coordinate lines normal to the airfoil surface. The
outermost loop is constructed so that the cascade periodicity conditions can
\ be applied without interpolation between grid points. The coordinates are
\ orthogonal on the airfoil surface but gradually become nonorthogonal away
\_f\ the airf‘oi],/’La.rge gradients in the viscous shear layers are adequately
resolved with a simple coordinate distribution function along the outward
normal direction from the airfoil. An essential ingredient in the genera-
tion of the cascade coordinates is the conversion of discrete curve-like data
into analytically defined curves which accurately reflect the overall
geometry. For this purpose a least squares spline procedure is employed.
The coordinate generation procedure accepts discrete input data representing
the airfoil surface, places little restriction on the airfoil camber or
spacing and is easily extended to three dimensions, The coordinate system
is thus more general and in many cases computationdlly less complex than
systems derived from conformal transformations.
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I. INTRODUCTION

An important problem which must be faced by the designer of advanced gas turbine
engines is the prediction of the flow field in and around turbine and compressor blade
passages. An accurate estimate of the flow field is required to predict the heat
transfer rates and aerodynamic losses both of which may be critical to successful
engine operation. 1In advanced engines, it is expected that turbine and compressor
blade passages may contain transoniec flow and in these more complex transonic flow
caces, techniques for predicting heat transfer rates and aerodynamic losses in the
transonic regime would provide a valuable tool in the engine design process. In
this regard poor estimates of either loss coefficients or heat transfer may result
in poor predictions of engine performance or catastrophic failure of the engine
components. For example, excessive heat transfer rates associated with boundary
layer separation and reattachment on turbine blades and end walls can have damaging
effects as the resulting hot spots may result in structural failure., In addition,
excess aerodynamic losses associated with viscous effects may result in a serious
deterioration of component efficiency. Since aerodynamic losses and heat transfer
rates are associated with the viscous nature of the fluid, the ability to predict
the viscous flow in high performance turbine and compressor blade pacsages becomes
quite important to the successful design process. Most presently available analyses
of the blade passage flow field have been based upon solutions of the inviscid
equations and then corrected for viscous effects through empirical data correlations.

Obviously, methods which completely neglect viscous effects or methods which
include viscous effects through empirical corrections are inherently limited. Other
more rigorous studies obtain an inviscid flow field and then input the blade pressure
distribution into a boundary layer procedure to calculate the viscous boundary layer
in the immediate vicinity of the blade. When the boundary layer remains small through-
out the entire blade passage, such a boundary layer correction may give an adequate
decscription of the flow even when viscous displacement effects upon the inviscid
flow are neglected. However, severe pressure gradients and shock waves can cause
boundary layers to thicken or become separated and in such a situation the boundary
layer displacement effects are expected to exert a significant influence on the
nominally inviseid flow field. When viscous displacement effects do alter the
nominally inviscid flow field significantly, it is necessary for the calculation
procedure to recognize the mutual dependence between the viscous and inviscid flows
either througn a strong-interaction analysis between a viscous boundary layer
solution and an inviccid outer flow field solution or through a full Navier-Stokes
solution in the entire region of interest. 1In regard to strong interaction analyses,
if the inviscid flow is supersonic and if a true inviscid core is present in the
blade passage flow field, the governing inviscid equations are hyperbolic in nature,
and the interaction analysis can be solved with a forward-marching procedure in
which inviscid and viscous regions are coupled implicitly. However, this interaction
formulation to a supersonic problem yields a stiff system of partial differential
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equations which may be difficult to analyze numerically. If the inviscid flow is
subsonic, the equations governing the inviscid flow field are elliptic and hence
cannot be solved by a forward-marching procedure in space. In this case a sequence
of inviscid and boundary layer solutions must be performed so that each corrects
its predecessor until a desired stage of convergence is obtained through a global

iteration. In any case, the strong-interaction analysis presents serious difficulties,

particularly, in interacting the viscous and inviscid solutions around the airfoils
which form the blade passage or in calculating substantial regions of separated flow.
Finally, the interaction approach is not even valid for flows in which the viscous
region encompasses most of the flow field since, in this case, no nominally inviscid
flow region exists.

Pue to the limitations and difficulties associated with strong-interaction
analyses, particularly in transonic flow with its extreme sensitivity to cross
sectional area, a computational method based upon solving the time-dependent Navier-
Stokes equations in the entire flow regime would be a favored alternative solution
procedure for the viscous blade passage problem. In a Navier-Stokes solution,
boundary layer separation and reattachment would evolve naturally with the advan-
tageous uce of the same basic numerical analysis for viscous and inviscid regions.
In addition, 2 solution based upon the Navier-Stokes equations would handle shock
wave-boundary layer interactions in a natural manner. Solution of the Navier-Stokes
equations, however, first requires a coordinate system appropriate for the geometry
and boundary conditions of interest. A coordinate system especially tailored for

the geometry and periodicity requirements of airfoil cascades is developed and
presented herein.
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II. BACKGROUND

A computer code capable of accurately predicting transonic flow through a
blade passage obviously would have a significant positive impact upon the gas tur-
bine design process as it would aid greatly in obtaining accurate predictions of
blade heat transfer and aerodynamic losses. To date most transonic analyses have
concentrated upon inviscid solutions of the isolated airfoil problem; a recent
review of inviscid isolated airfoil transonic flow analyses has been presented by
Yoshihara (Ref. 1). In contrast several inviscid analyses have been developed
specifically for the cascade problem. These cascade analyses include the transonic
procedures of Delaney and Kavanagh (Ref. 2) and Gopalakrishnan and Bozzola (Ref. 3)
among others. Although these inviscid flow analyses can serve to predict certain
features of the passage flow, their inviscid assumptions lead to several major
limitations.

The major limitations which evolve from an inviscid flow analysis concern
application of the Kutta condition, neglect of viscous phenomena, prediction of
shock location and predictions of the trailing edge base pressure. Considering
first the Kutta condition problem, if the flow field is assumed inviscid, only the
normal velocity at the airfoil surface is set to be zero; no restriction is placed
upon the tangential velocity. In this situation, the oncoming flow impinges upon
the leading edge region of the airfoil and somewhere in this region a leading edge
stagnation point appears. The inviscid flow divides at the stagnation point as
some of the flow (that which is above the stagnation streamline) proceeds along
the upper surface of the airfoil and the remainder of the flow (that below the
stagnation streamline) proceeds along the lower surface. Since the flow is invis-
cid, there is no restriction on the tangential velocity along either surface. This
slip velocity presents no problem until the trailing edge is reached. At the
trailing edge, the flow along the upper surface rejoins that along the lower sur-
face and passes into the wake; however, there is no guarantee that when the upper
surface and lower surface flows join at the trailing edge they will both have
identical tangential velocities. TIn general, the tangential velocities predicted
by an inviscid theory will be different and an unrealistic velocity discontinuity
will result from an inviscid analysis in the wake. The usual method by which this
unrealistic behavior is suppressed is through the application of a Kutta condition
in which an airfoil circulation is specified which either makes the airfoil trailing
edge a stagnation point or which causes an identical nonzero tangential velocity to
appear in both the upper and lower stream at the trailing edge. While the proper
specification of the Kutta condition is both reasonable and straightforward for
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inviscid flow is calculated ignoring any displacement effects of the blade boundary
layer and then a boundary layer calculation is made under the influence of the
inviscid pressure distribution. Under severe pressure gradients or at low or
moderate Reynolds numbers the boundary layer can thicken or become separated and in
such cases the nominally inviscid flow field calculated in the absence of any
viscous effects is considerably different from that which is actually present. In
the presence of such viscous displacement effects an accurate calculation procedure
must recognize the mutual dependence between the viscous and nominally inviscid
flow either through a strong interaction analysis (e.g., Erdos, Baronti, and
Elzweig; Ref. 8) or a full Navier-Stokes solution in the entire region of interest.

A strong interaction analysis may take the form of either a forward marching
procedure or a global iteration. For regions where the inviscid flow is supersonic
and thus described by hyperbolic equations, a solution can be marched with the
inviscid and viscous regions coupled on a station by station basis. The chief
difficulty in this process is that stiff equations must be solved. Common problems
with stiff equations show up in the form of numerical solutions which can quickly
branch off the desired solution thus producing a physically unrealistic result. In
regions where the inviscid flow is subsonic and thus described by elliptic equations,
a forward-marching procedure is impossible and consequently a sequence of inviscid
and boundary layer solutions must be performed in a manner where each stage corrects
the former one through a global iteration. Although transonic inviscid analyses of
cascades could be extended by incorporation into a strong-interaction calculation,
implementation of the strong-interaction analysis is difficult; and for the tran-
sonic cascades of interest the strong-interaction analysis is not expected to be
more economical than a full Navier-Stokes solution. Furthermore, the interaction
analysis is invalid for flows which are almost entirely viscous; in such flows no
inviscid core exists and under these circumstances where no inviscid core exists a
reliable solution must be based upon the Navier-Stokes equations. Finally, if an
interaction procedure is to be used, the viscous layer is solved by a forward
marching boundary layer calculation procedure. In the case of steady state boundary
layer procedures, problems will be encountered when the boundary layer is subjected
to a strong enough adverse pressure gradient to cause separation. Although a
boundary layer procedure can be marched through separation by the usual method of
suppressing streamwise convection terms in the separated region (e.g. Ref. 9) the
resulting solution is based upon an approximation made in the separated flow region
and calculated details of the flow in this region must be viewed with caution.

Since a strong interaction analysis may not be valid in certain cases of
interest due to the lack of any identifiable inviscid core and since an interaction
calculation requires a time-consuming iteration, a computational method based on
solving the time-dependent Navier-Stokes equations is an attractive alternative.
With a very competitive computational speed a Navier-Stokes method would be directly
extendable to three dimensions and would correctly produce the viscous behavior.
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isolated airfoils at high Reynolds numbers, proper specification may not be obvious
in cascades for either time-dependent or steady state flows. Any uncertainty in

the Kutta condition can be very detrimental to an inviscid flow calculation since
even modest modifications in the Kutta condition can lead to significant modifica-
tions in the generated potential flow. 1In contrast to the necessity of applying

a Kutta condition in inviscid flow, no such procedure is required in a viscous

flow calculation. The viscous flow calculation applies a no-slip boundary condition
to the blade surface and, thus, no discontinuity develops. Tn a viscous flow solu-
tion, no circulation is applied but rather the circulation emerges as part of the
viscous solution.

A second deficiency associated with an inviscid solution concerns the neglect
of viscous phenomena. If viscous phenomena are neglected, aerodynamic losses can-
not be predicted; and hence, engine performance cannot be reliably estimated. 1In
addition to this inability to predict aerodynamic loss, an inviscid solution cannot
predict wall heat transfer rates and, thus, an inviscid procedure cannot be used to
determine the location of hot spots such as may occur at a separated boundary layer
reattachment point and cannot predict the cooling required to maintain structural
integrity. Obviously, accurate predictions of wall heating and aerodynamic losses
are critical to a successful design. In addition, an inviscid calculation may not
be adequate for predicting the location of a transonic shock. Since in transonic
flow an inviscid calculation is extremely sensitive to the effective airfoil shape,
an inviscid determination of the shock location may be unreliable unless the
boundary layer thickness is very small. When the physical boundary layer viscous
displacement effects change the effective airfoil geometry, the inviscid placement

of shocks may be in considerable error. Finally, in the case of a blade with a
significant base region, inviscid solutions in general will be inadequate in pre-
dicting the base pressure and thus will not correctly account for a significant

loss mechan.sm.

Despite inherent limitations of inviscid flow theory, many existing inviscid
transonic analyses have been developed for both the isolated airfoil problem and
the cascade problem. These include the cascade analyses of Refs. 2 and 3 and the
isolated airfoil analyses presented in Refs. L-7. All these procedures have met
with varying degrees of success for a variety of problems but all are limited by the
aforementioned restrictions inherent in the inviscid assumption. In certain cases
these limitations could be relieved by coupling a boundary layer computation to the
inviscid flow analysis and in all cases the limitions could be relieved by solving
the entire flow field with the Navier-Stokes equations.

In cases where the boundary layer is thin, the viscous displacement effects on
the nominally inviscid flow field can often be neglected and then it is possible
that a suitable prediction of viscous effects may be obtained from simple boundary
layer theory. {uch an approach has been used to modify some inviscid procedures so
as to include viscous effects (e.g., Korn and Garabedian). In those procedures the
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Implicit procedures studied by Briley and McDonald at UTRC have led to the
development of a highly efficient time-dependent implicit Navier-Stokes computer
code which could form a basis for solving the blade pressure problem (Ref. 10).

Navier-Utokes solutions can be obtained either through a relaxation of the
steady-state Navier-Stokes equations or through application of the time-dependent
Navier-Utokes equations subjected to steady~state boundary conditions. In this
latter case, the time-dependent solution would progress to a steady-state and time-
steps can be regarded as an iteration. Solution procedures for the time-dependent
equations may be either explicit or implicit. If the solution procedure is expli-
cit, the maximum time-step is governed by stringent stability limits (Ref. 11)
which relate the maximum time-step to the size of the computational grid. If a
viscous layer is to be adequately defined, a fine grid is required in the vicinity
of the blade surface and in such cases the stability limit would make an explicit
calculation impractical. However, implicit methods are not subject to such sta-
bility limits, rather they are only limited by the physical time scale o1 the flow.
Thus implicit solution procedures of the time-dependent Navier-Stokes equation
represent a reliable method of solution for the blade passage problem. In addition,
a time-dependent solution could be readily extended to investigate the time-dependent
blade passage problem.

A typical time step in the Ref. 10 procedure consists of a time-wise linearization
followed by a fully implicit difference approximation which is solved by an ADI
(Alternating Direction Implicit) procedure of the Douglas-Gunn type (Ref. 12). The
advantage with ADI methods is that a short sequence of simple matrix inversions
replaces the complicated matrix inversion problem associated with a direct solution
of the implicit equations. In this way a real savings in computer time is made
without sacrificing accuracy or stability. By experience the scheme has run
accurately and stably with time steps that are about 100 to 1,000 times the expli-
cit stability limit. The net result is a solution procedure that for certain
classes of problems is several orders of magnitude faster than the well-known expli-
¢it methods such as those of Lax-Wendroff (Ref. 11) and MacCormack (Ref. 13). The
UTRC computer code MINT ( Multidimensional, Implicit, Navier-Stokes, Time-dependent)
which is based upon a time-dependent ADI solution of the Navier-Stoxes equations,
is a highly modularized efficient program which has options for two and three
dimensional modes of operation. This code could form a basis for the efficient and
accurate solution of the transonic viscous blade passage problem. Such a solution
would include viscous effects, be extendable to three-dimensional and time-dependent
problems and would not require specification of a Kutta condition.
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Once the numerical method of solution has been chosen, the numerical solution
of practical viscous flow fields is a function of the basic geometry of the flow
region. For the overall numerical solution to be accurate and efficient, it is
important to obtain an accurate representation of the geometry which is efficiently
generated. In most practical problems of importance the flow region is generally
nontrivial. Nontrivial geometries are usually treated by the use of either a
finite element method or by a transformation of coordinates. 1In the finite element
method, the numerical solution and the geometric analysis coincide (Ref. 1L).

Here small triangular or rectangular elements are used to cover the entire flow
region; thus, forming a finite element mesh. The solution procedure results from
an integration over each mesh element. In two dimensions the finite element
analysis has been extended to include elements with one curved side. However,
the analysis has not been effectively extended to three dimensions; and in
addition, the two-dimensional case is not completely adequate for the accurate
representation ¢f nontrivial geometries. The problem occurs with the coupling
of the finite element integration and its element boundaries which may be curved.
Consequently the manner in which curved sides of a pair of finite elements are
joined is quite restricted if the following integration is to be sufficiently
simple. The restrictions imposed by integration tend to cause a poor representa-
tion of the geometric boundaries of the flow region. Here it is of prime impor-
tance to accurately represent the local curvature of the region boundaries.

The boundary curvature can be accurately rendered if the boundary is fit without
the above restriction. From this point of view, the use of a coordinate trans-
formation is desirable. An additional attraction of a coordinate transformation
approach is that a regular ordering of the computation mesh is given for a problem
with curved boundaries. The regular mesh ordering is important since the matrix
banded structure in the solution procedure is by far less complex than the
typical structure which results from a direct use of the finite element method.
The use of a coordinate transformation does not, however, rule out the possible
use of a finite element method since the regular mesh in computational space can
be used in a finite element solution of the transformed equations.

For the two-~dimensional airfoil or cascade of airfoils, the most common
type of coordinate transformation is the conformal transformation. The theory
of one complex variable can be applied to obtain not only conformal coordinates
but also a potential flow solution to the inviscid equations. The arbitrary
airfoil, however, cannot be easily transformed via complex variables. The result
is usually a composition of several conformal transformations which is generally
complicated and time consuming. In addition, the potential flow solution is
of little value in a study of the fully viscous flow field since the inviscid
streamlines, as noted above, are not very accurate. Consequently, the use of
a conformal transformation is not completely justified by the result of a potential
flow solution. A further problem with conformal transformations is that highly
cambered and/or tightly spaced airfoils are difficult to transform into reason-
able coordinate curves. Orten the positions of coordinate curves are impractically
situated for a viscous calculation. The best positions would be expected from a
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potential flow solution which can be obtained by the specification of a suitable
source and sink, but then stagnation points occur at leading and trailing edges.
The resultant coordinate singularities tend to cause difficult numerical problems.
Such problems can be removed by abandoning the potential flow solution in attempt-
ing to obtain a suitable coordinate transformation. It is possible to consider
alternate conformal mapping transformations not based upon potential flow solutions.
Unfortunately the coordinate curves in such cases tend to have a spurious behavior.
For example, one may obtain cascade coordinates with coordinate curves that connect
upper and lower surfaces of the airfoil with s-shaped curves that pass around and
over either the leading or trailing edges. A final drawback to the use of
conformal transformations is that a straightforward extension to three dimensions
loes not exist. To date there has been no applicable function theory as in the
wwo-dimensional case with complex variables. As a result the most common method

of coordinate construction is to use a set of parallel planes each with a conformal
transformation of the airfoil (or cascade) contours, (Jameson Ref. 15). As a
further result, these nonorthogonal coordinates require a great amount of labor.

In addition, the resulting coordinates are not orthogonal at the airfoil surface
where large viscous gradients exist and must be suitably resolved.

All of the above problems are readily overcome with the cascade coordinate
systems developed here. The coordinates are easily generated and well-positioned
for the numerical study of a viscous flow field. The coordinates are nonorthogonal
but this nonorthognoality is controlled. Specifically, the coordinates are
orthogonal on the airfoil surface and gradually depart from orthogonality as the
free stream regions are approached. Thus essentially orthogonal coordinates are
used in the regions where large gradients appear in the solution. As orthogonality
leteriorates the solution gradients become smaller; and hence, the projections
between computational directions do not cause any significant errors in the
numerical solution. The nonorthogonality does cause the equations of motion to
contain more terms, but this is more than compensated for by the simple constructive
nature of the cascade coordinates which result in an algorithm that is considerably
faster than a corresponding conformal transformation. The only real time consuming
part is the generation of an accurate surface representation which renders not
only a good approximation to airfoil coordinate locations but also to the important
airfoil curvature. A lesser demand on the accuracy of the surface representation
would yield a faster algorithm; however, the accuracy of the final solutions would
deteriorate. 1In addition, the cascade coordinate system presented herein allows
a more flexible distribution of mesh points than does a conformal approach, and
is easily extended to the three-dimensional case.
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III. A COORDINATE SYSTEM FOR CASCADE GEOMETRIES

Overview

If a computational model of the viscous flow field through a cascade of airfoils
is ever to become an effective design tool, then the resultant computer code must
be of sufficient generality to accurately and efficiently produce physically reason-
able solutions to a wide variety of cascade problems. To obtainthe necessary generality
use must be made of a coordinate system in whichthe cascade geometry is specified by a
sufficiently dense discrete set of points. Ideally one may easily envision the
design engineer who would enter his geometric data directly from his blueprints of
an airfoil contour. 1In addition, other parameters must exist to allow the coordi-
nates to be arbitrarily stretched in upstream and downstream directions so that
free stream conditions can be well approximated. Also mesh distributions must be
easily specified to adequately resolve regions where large gradients are to be
expected, such as in the boundary layers and at leading and trailing edges.

The considerations indicated above have been well accounted for in the development
of the cascade coordinates presented herein. The required input information consists
of the geometric data points, the downstream-upstream extensions, the periodic
spacing of airfoils, and the mesh point distribution. The periodic alignment of
the cascade determines a vertical direction. The geometric data for the airfoil
contour is then accepted in the form of a sequence of vertical slices of the airfoil.
In properly aligned cartesian coordinates (x,y) each vertical slice consists of an
x-coordinate which determines a vertical line x = x; and two y-coordinatesy = yi and
¥4 ;itodenotethey values where the vertical line x = x; intersects the airfoil. (See
Big, 1.

It will be assumed that the distribution and quantity of vertical slices is
enough to adequately specify the airfoil contour to a viewer who exanines the air-
'oll as a whole from a reasonable distance. From a close up distance where only
a small part of the airfoil is examined, the viewer would probably notice the
occurrence of small fluctuations in the data caused by inaccuracies in measurement
of this data. These inaccuracies will always occur when the data is taken directly
from a grapn of the airfoil contour. Data fluctuations of this type present no
problem to the curve fitting procedures that are used here. The curve fitting will
always be done with a parametric least-squares spline which will effectively filter
out the unwanted noisy fluctuations in the data. The result is a smooth curve which
accurately reflects the local curvature and the global shape of the given contour
from which the discrete data were taken. In the development presented herein, it
will be assumed that a least-squares spline routine is always available to convert
discrete descriptions of curves into smooth and differentiable representations of
the same curves.

Coordinate extensions in the upstream and downstream directions are specified by
two input lengths which measure the distance of extensions, respectively, in front
of and in back of the airfoil. The angles of the extensions are either input as
parameters or are automatically made by the coordinate generation process. Thus

9
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a user not only has the option to stretch his intended computational domain to
obtain reasonable approximations of the far field regions of the flow; but also,

he has the option to align the extensions with the flow direction into and out of
the cascade. This will be seen to have the important property of concentrating the
mesh points along the leading and trailing edges of the airfoil in an optimal
fashion. An additional option on the distribution of mesh points is the control
over the density of mesh points near the airfoil boundary. The user merely specifies
a predicted boundary layer thickness and the fraction of mesh points that are
desired to resolve the boundary layer. If desired, the predicted boundary layer
thickness can easily be made a function of time by an updating process from the
previous time levels in a solution procedure. The simplicity of this process will
be evident from the modular way that this distribution enters into the coordinate
construction. The remaining information that must be specified is the number of
computational mesh points which are to be distributed around the outer boundary of
the computational region. This number is broken down into three parts. Specifically, one
must specify half the number of periodically aligned points, the numbar of points for the
inflow boundary, and the number of points for the outflow boundary.

With the above input a system of coordinates is generated in a manner which is
a generalization of both polar coordinates and the classical boundary layer
coordinates (Ref. 16, pg 312). The circles in polar coordinates are now replaced
by a family of loops about the airfoil which start with the airfoil itself and
smoothly deform into the outer boundary of the computational region. The polar
radii are replaced by straight lines which emanate from the airfoil surface and end
on the outer boundary. As in boundary layer coordinates, the straight lines are
taken to be orthogonal to the airfoil surface. However, since the intermediate
loops are chosen by an interpolation between the airfoil surface and the outer loop
the resultant system of coordinates is generally nonorthogonal. The nonorthogonality
of the coordinate system as a whole is of no great concern since the coordinates
are nearly orthogonal in the regions where the viscous flow is undergoing its greatest
rate of change. Specifically, the coordinates, by construction, are precisely
orthogonal along the airfoil surface and gradually deviate from orthogonality as
one leaves the airfoil surface. The greatest degree of nonorthogonality occurs in
the upstream and downstream regions where free stream conditions are being approached;
and where, thereif'ore, the gradients in the viscous flow field are very small. If
the outer loop could be taken as a uniform expansion of the airfoil along its
outward normal lines, then the resultant coordinate system would be precisely a set of
boundary layer coordinates for the airfoil and accordingly would be orthogonal everywhere
(Fig. 2). If an addition, the airfoil contour is a circle, then the coordinate
system becomes a set of polar coordinates. Since the coordinate system has been
constructed for a cascade of airfoils, the outer loop generally cannot be taken as
an outward and uniform expansion of the airfoil itself (as in Fig. 2). Instead the
outer loop must be generated from a curve which can conveniently be used for the
application of the necessary periodicity conditions in the cascade problem. The
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basic shape of this curve should be reasonably close to the ~amber of the airfoil.
Hopefully, without too much confusion, it will be referred to as a camber curve.
The generation of the camber curve is accomplished on a discrete level within the
airfoil contour and is extended by lines outside of the airfoil. The discrete data
can be conveniently generated by averaging the y-values Yi, 2; of each vertical
slice x = X3 in the discrete specification of the airfoil contour (depicted in Fig.
1). The discrete data is made into a differentiable curve which is extended by
lines in front of and in back of the airfoil. Within the airfoil the camber curve
is an approximation to the real camber line of the airfoil. The main distinction
between these curves is that the real camber line is generated by averaging airfoil

data along lines which are orthogonal to itself as opposed to the camber curve

here which is generated by averages along the verticals. The camber curve thus
has the advantage of a simple specification. The camber curve is shown in Fig. 3
as line A-B. After a smooth camber curve is created, the domain of the calculation

is bounded by two curves each parallel to the camber curve. One curve, line C-D,
is above the airfoil and the second curve, line E-F, is below the airfoil. The
‘urves are separated by a distance equal to the airfoil spacing and are capped

of f at upstream and downstream ends by curves which are smoothly joined to form
the differentiable outer loop depicted by CDFE in Fig. 3. The outer loop is then
reparameterized in a manner which yields a periodic alignment for the mesh points
where a periodicity condition must be applied. The next step is to impose the
parameterization of the outer loop upon the inner loop by dropping normals onto the
airfoil surface. The reparameterization is accomplished by the assignment of the
parameter value of each outer loop point to the point on the airfoil contour which
has an airfoil normal line passing through the given outer loop point. This is
computationally executed on a discrete level and then made into a smooth curve by
the least-squares spline routine. The inner loop with the imposed parameteriza-
tion from the outer lcop is now properly aligned so that any line joining inner
and outer loop points of the same parametric value results in a line that leaves
the airfoil as a normal line. The normal lines form the family of the coordinate
curves which correspond to the radii of a polar system. These are illustrated in
Fig. 3. The other coordinate curves consist of the loops that are obtained by an
interpolation along the above normmal lines. The periodic alignment of the result-
ing coordinate system is illustrated by the line GH which is represented by a dashed
line since it is not a coordinate curve.

The Effect of Airfoil Curvature on the Placement
of a Lower Coordinate Boundary

The construction of the cascade coordinate as outlined above will now be discussed
in more detail. The necessary input data will be assumed to exist. The input
data basically consists of a discrete rendition of the airfoil geometry by vertical
slices, specified extensions of the computational domain upstream and downstream of
the cascade, and the desired mesh point distributions for the flow field calculation.
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As a first step the discrete airfoil data is converted into a smooth curve by
an application of the least-squares spline algorithm. The curve parameterization
is obtained from the cumulative arc length between data points. The result is an
accurate fit to data with an (almost) arc length parameterized curve ¥(t) = (y'(t),
vZ2(t)) which has at least two continuous derivatives and accurately reflects the
curvature of the contour from which the raw data was taken. The two continuous
derivatives are needed to perform the calculation of the curvature which is given
by the formula

- — ,V?",m oz @)

where § is the actual analytic arc length along the curve, § = ./ VW9, & - V58,
apd, the, sunmation cgnvent%on of suming like indices has been invoked with e =
YV + YV, ete., ¥ =dy /dt, and ¥ = d“y™/dt°. The analytic arc length, S, and
the polygonal arc length, t, are nearly equal since t is an approximation of S.
Thus $ > 1, 3>~ 0, and as a result K~ stﬁ$mi The curvature here is needed to
determine the extent of the computational boundary below the airfoil. Since the
bottom side of the airfoil is usually concave it is clear that there is a restric-
tion on the distance that the coordinates can extend below the airfoil. Otherwise,
the proposed coordinate normal lines would have intersections among themselves
when the domain is stretched beyond a certain point. This would cduse coordinate
singularities at such points. An illustration of this singularity is given in Fig. L.
To prevent the appearance of singularities due to intersecting normal lines, the
cascade coordinates must be restricted in the region below the airfoil to lie above
all points of possible intersections. The restriction is analytically specified
by a knowledge of the centers of the oscillating spheres along the concave side of
the airfoil. The osculating sphere in two dimensions is the circle which is tangent
to the airfoil bottom and is determined by matching its derivatives with the airfoil
surface until all of the parameters of the circle are determined. The result is a
circle of radius 1/K which is tangent to the airfoil bottom. The center is located
at a distance of 1/K along the airfoil unit normal vector fi which is given by

wlll o oI o
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where G, and ﬁg are the standard cartesian unit vectors along the x and y axes
respectively. Thus, the vector position of the center is given by the quantity
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which will trace out a curve below the airfoil as the concave part of the airfoil
bottom is traversed. To obtain a well-defined coordinate system the coordinates
st terminate within the region bounded below by this curve and above by the

r

airfoil bottom. For an illustration, see Fig. 5.

In the f'igure, the curve determined by the centers of the osculating spheres
is given by the dotted curve, the lower boundary of a well-defined coordinate
system is given by the dashed curve, and one of the osculating spheres is displayed
as a solid curve. The curve which must be properly positioned below the airfoil
is the curve which is parallel to the camber curve and which will be used to form
the bottom of the coordinate system. This curve is chosen because it is bent in
roughly the same manner as the airfoil. A good restriction on the vertical lower-
ing of the camber curve is to lower it by a distance of not more than half way
between the airfoil bottom and the curve determined by the centers of the osculating
spheres. This restriction will place same distance between lower boundary of the
coordinates and the centers ot the oscillating spheres. The 1istance must be small
enough to avoid potential problems which would result if the lower coordinate
boundary were to approach the center of an osculating sphere. 1In such a case,
amall distances along the lower coordinate boundary would produce large correspond-
ing distances along the airfoil bottom. The result would be an under resolution of
the bottom of the airfoil and hence an undesirable loss of accuracy in a numerical
solution for the flow field. For an illustration see Fig. 6. The rather uniform
mesh distribution on the lower boundary is denoted by a seguence of x's and the
correspondingly poor mesh distribution along the airfoil bottom is denoted by a
sequence of dots. To obtain the desired lower bound on the amount that the camber
curve can be lowered, half the minimum vertical distance from the bottom of the
airfoil to the trace of center points of the oscillating spheres must be calculated.
This is accomplished on a discrete level. The analytic curve for the airfoil is
discretized by a uniform mesh over its parameterization and at each of these mesh
points a unit normal vector (Eg. 2) is computed when possible. At inflection points
the curvature vanishes and the unit normal vector given in Eq. 2 does not exist.
Otherwise, the unit normals always exist and point in the direction of curve concavity.
This is easily seen from Fig. 5 and the observation that the center of an oscillating
sphere is in the positive normal direction. Consequently, a change in the direction
of curve concavity can only occur at inflection points. A method is then needed
to detect those inflection points where a change in the direction of concavity has
occurred. The chosen mesh may not explicitly contain any of the inflection points
but this is really no problem. The mesh is considered as an ordered set of points
starting at airfoil leading edge and moving in a counterclockwise direction along
the airfoil bottom, around the trailing edge, and then back along the top. At the
leading edge, the normal vector is pointing into the interior of the airfoil and
here an integer value of -1 is assigned. At the next point, the unit normal vector
is projected upon the previous unit normal vector (which, in this case, is at the
leading edge) by means of a dot product. If the data points are reasonably close
together then the dot product is nearly +1 or -1. If it is nearly +1, then the
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integer value is unchanged. Otherwise, a sign change is given. The process is
then repeated and mesh points are successively assigned integer values of plus or
minus unity. Specifically, the value of -1 is retained until the first mesh point
in the concave portion of the underside of theairfoil is reached. From there the
value of +1 is maintained until the next change in concavity occurs at the first
mesh point where the airfoil becomes convex again which is usually near the trail-
ing edge. If there is to be only one concave portion of the airfoil, the process
can be terminated at this point since all other values would be -1 indicating that
the remaining normals all point inwards. It is now clear that by ordering in a
counterclockwise direction as opposed to the opposite direction, the indicated
possibility of early termination occurs and is a way of conserving computational
effort. (See Fig. 7.)

In concurrence with the above process, when points occur with assigned integer
values of +1, the centers of the osculating spheres are calculated from the expres-
sion (Eq. 3). The x-coordinate of the center of an osculating sphere must usually
lie within an interval determined by the x-coordinates of two successive airfoil
mesh points. The only other intervals are the infinite intervals upstream and
downstream of the airfoil. To find this interval a search is performed along the
bottom of the airfoil. The integer locations are saved and the vertical distance
can easily be computed as the average of the y-values at the interval endpoints
minus the y-value of the center of the oscillating sphere. For an illustration
see Fig. 8. The mesh along the bottom of the airfoil is denoted by a sequence of
x's and the center of an oscillating sphere is given by a normal extending a dis-
tance of l/K outside of the airfoil. As this process continues throughout the
concave part of the airfoil bottom, the successive vertical distances are monitored
and a minimum is taken. Next, the maximum vertical thickness of the airfoil is
computed. Withthis information a criterion can easily be constructed to determine
the amount which the camber curve is lowered to form the bottom of the computational
domain. The difference between the periodic spacing and the maximum thickness of
the airfoil is just the smallest vertical distance between consecutive airfoils as
their chords are traversed. If one halfof this distance is less than the allowable
vertical distance due the concavity restriction above, then the bottom of the com-
putational domain is set at one half of the periodic spacing distance below the
camber curve. The top of the computational region is then one half of the periodic
spacing distance above the airfoil; and the computational domain is bounded from
above and below by well-centered curves which are parallel to the camber curve.

By contrast if the inequality is in the other direction, then the camber curve is
lowered by one half of the maximum airfoil thickness plus the distance due to the
concavity restriction. This results in a computational domain which is not as
well centered about the airfoil as in the previous case.
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The Construction of the Camber Curve

The above criterion for the vertical displacements of the camber curve can all
be generated before the camber curve is constructed. For its application the camber
curve must obviously be in existence; and therefore, shall now be constructed.

Since the airfoil data is specified as a sequence of vertical slices x = x; with
y=-values y vy and y = z3 (which are assumed to be upper and lower surface points
respectively), airfoil camber data is generated by a criterion of the form x = > &R

y = (I-n;)yi t @3z3 for O < @3 < 1, as i runs through all of the vertical slices.
For a smooth set of camber data the sequence oy mist be generated from a continuous
function of limited total variation (see Royden, Ref. 17). The result of any such
choice of function will be a sequence of data points which roughly follow the camber
of the airfoil since all data points must lie within the interior of the airfoil.
For convenience, the sequence a; - 1/2 was selected. The resultins sequence of data
points is first parameterized by polygonal arc length and then fit with a least-
squares spline curve. The fit will vary in accuracy depending upon the number of
spline segments that are used. Generally the accuracy will increase with the number
of segments when everything else remains unchanged. In this case, however, accuracy
is less important than it was with the airfoil contour. Consequently, a smaller

number of segments are needed. Under the assumption that the curve remains reasonably

near the data, the only additional constraint on accuracy is that the polygonal arc
lencth parameterization provides a reasonable approximation to the analytic are
length of the resultant curve. This part of the camber curve is used to form upper
and lower computational boundaries which are directly over and under the airfoil
itcelf. On these parts of the outer boundary loop it is important to obtain a
reasonably uniform mesh distribution with respect to arc length since it is this
mesh distribution which will be used to imposea parameterization over most of the
airfoil surface as normal lines are dropped. A uniform subdivision of the parameter
values will then result in a uniform distribution of mesh points over the segments
in question on both the airfoil and the surrounding outer loops. An additional
bomus is that the linear extensions of the camber curve in upstream and downstream
directions are simplified. Since the parameter is almost an arc length parameter,
it has an arc length derivative which is nearly unity. On the linear extensions

a continuous rate of expansion relative to arc length is desired so that the number
of mesh points are conserved as the computational boundaries are sketched. Other-
wise the numerical computation of the viscous flow field would overly resolve the
stretched regions, and thus waste a considerable amount of computational time on
parts of the flow where no substantial changes are occurring. Typical extensions in
the upstream and downstream directions would be on the order of one chordal length
of the airfoil in each direction. The number of potentially wasted points then
could be substantial.

Since the linear expansion is to occur smoothly from an existing arc length
parameterization, the arc length derivative of the parameter must be unity where
the extensions are joined to the curve. The direction of each extension is given
by the specification of a unit vector in the desired direction. Typical choices of
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direction may, for example, be selected from the flow conditions or from the global
airfoil geometry. More specifically, one may stretch the coordinate system in the
free stream directions of the far field velocity vectors upstream ana downstream of
the cascade. Or one may stretch the upstream and downstream extensions in the direc-
tion of the real airfoil camber line as it emerges from each end of the airfoil.

This latter choice is a result of the global geometry since the direction of the
real camber line is bent by the airfoil contour under the requirement that it be

the midpoint of its own normmal line which intersects the airfoil on opposite sides.
When the vertically averaged airfoil data is fit with a small number of splined
segments, the accuracy of the fit is lowered and the alignment with the global geometry
is improved. At the leading and trailing edges of the airfoil the unit tangent vectors
to the camber curve arewell aligned with the global geometry and are nearly in the same
directionas the endpoint tangent vectors of the real camber line. By contrast, whena
larce number of splined segments are used, a highly accurate fit is obtained and the unit
tangent vectors at the endpoints of the resultant curve are in directions which generally
only reflect the local airfoil geometry and not the airfoil camber. For example, if
the leading and trailing edges of the airfoil are formed by circular arecs, then
vertical averages over circles will result in lines parallel to the x-axis (which is
generally not aligned with the endpoint camber directions) and this may or may not

be a desirable direction for an extension of the coordinate system. Thus, the direc=~
tions upon which the camber curve leaves the airfoil are controlled by the number

of splined segments which are used in the construction of the curve. When the
directions of extension are not specified, the camber curve will be extended in the
directions which it leaves the airfoil and the directional control, as seen above,
will be a result of the number of splined segments.

The directions in question are obtained from the unit tangent vectors to the
camber curve at leading and trailing edges. Let a(t) for O0'sS € < tl denote the
camber curve between leading and trailing edges. Then the vector field consisting
of unit tangent vectors to @(t) is given by

- >
= _ da _ do
il St~ ()

o

where § is the arc length starting from 3(0). The approximate equality is a result
of the polyconal approximation of t to S. Since the vector field v points in the
direction of increasing arc length along 3, tlie extension in front of the leading
edre ic in the nepative v(0) direction. Thus, an extension in front of length F

is of the form

*(0) + 55(t) ¥(0) (5)

where Sp is the arc length measured from -F to O as the parameter t varies from O
to some T. The value of T will determine the proportionate number of points in
front of @ relative to the number of points on @. If &(t) is discretized into k
points uniformly distributed with respect to t, then the parameter spacing is given
by At = t./(k=1). For the extension in front, the greatest integer part of F/at
(denoted %F/At] ) is a measure of the number of whole At increments that could be
it into the extension if the parameter t of the extension were to approximate arc
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length., For small extensions it is desirable to continue the parametric approximation
to are length by a discretization of the extension into the number of parametric
intervals just given. However, if the extension is large a coordinate stretching
relative to arc length is best. Large extensions are often needed to approximate
free stream conditions. Thus, the extension is cut into

n, = min([F/at], mp) 6)

units of length At where the positive integer mp is a specified cut off value.

The arc length function Sp(t) is then to be parameterized from O to T = npbt.

At the value T the derivative of Sp is taken to be unity since the extension is to
be joined at the resultant point with the nearly arc length parameterized curve

. The desired stretching is readily given by the quadratic are length function

sp(t) = (T-8)[(% - 25)(2-8) - 1] (7)

which monotonically increases from Sp(0) = -F to Sp(t) = 0 and ends with a slope

of Sp(T) = 1. A graph of Sp appears in Fig. 9. If F is large the function leaves -F
fairly rapidly and gradually decreases its rate of climb towards O where the rate of
increase becomes proportional to arc length. Upon substitution into the expression
for the linear extension in front (5), a discretization for t = 0, At,ee., npAt
yields data points on the line which at the start are separated by fairly large
distances that continually decrease until the end where the separation is propor-
tional to arc length. When the parameters of the discretization of @ are each
increased by the addition of T units, the result is a discretization of the exten=-
sion in front continued by the diseretization of @ with the new parameterization
which varies smoothly through the juncture point. Note that the juncture point is
produced by both curves but is oniy counted once in this process. Thus, the dis=-
cretization consists of k+np points counting endpoints. The last point has a
parameter value of t, = t; + T, and a rate of change that is directly proportional
to arc length. In the same manner as before, an extension of B units in length is
added on to form a linear continuation in back of the airfoil trailing edge. The
extension is of the form

a(ty) + sB(t)z(tl) (8)

where Sy is the arc length measured from t; to tp + B, as the parameter varies from
to to tp + R for some length R. The value of t, was chosen instead of t; since the
eventual discretization will be a continuation of the previous discretizations, and
this choice will immediately lead to a smooth continuation of the parameterization.
The extension in back is cut into

n, = min([B/at], mB)

B (9)
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units of length At with an integer cut off value of mp for a total parameter change

of R = npAt. Unlike the extension in front, however, the extension in back expands
from an arc length parameterization and not into one. This change in direction results
in the requirement that Sﬁ(t?) = 1. As before, a quadratic stretching function is
sufficient and the result is given by

B 1

which monotonically increases from SB(t?) = 0 to Sg(t, + R) = B and starts with a
1 -l &
slope 8,(t-) = 1. A graph appears in Fig. 10 .

The discretization for t = ty + At ...y t + npAt yields data points on the
linear extension in back which at the start are separated by distances that are
proportional to arc length and then continually increase from there in an opposite
fashion to the frontal extension. When this discretization is added onto the end
of the prior discretization, a properly parameterized discretization of the entire
camber curve with extensions is obtained. The parameterization starts from O and
ends with a value t? = t» + R. The total number of points in this discretization
is given by the sum Np + k + ng. At this stage the data points could be fit with
smooth curve that is parameterized in correspondence with the given discrete para-
meterization. Instead, however, it is best to directly use tho above discretization
to form a properly parameterized discretization of the entire outer loop which
encircles the airfoil and forms the outer boundary of the coordinate system. Then
the outer loop discretization will be fit with just one curve fitting process as
opposed to separate curve fits which must be smoothly joined between the upstream
and downstream endcaps and the vertically translated camber curves. For an illus-
tration, see Fig. 11 where the conctituent parts of the outer loop have been dis-
played. The camber curve appears as the curve which linearly emerges from the airfoil
through its extensions. The vertical translates are then displayed alongwith the adjoining
endeaps. At the expense of a small amount of storage the discretization of the camber curve
ic vertically translated above and below the airfoil in the manner prescribed by
the algorithm of the previous section which yields a determination of the vertical
distance of translation based upon the airfoil thickness, spacing, and underside
curvature,

The Construction of Endcaps for the Outer Loop

Let the vertically translated camber curves of the previous section be denoted
by B(t) and 4 (t) for the lower and upper parts of the outer loop. As with the
canber curve itself, the range of the parameter t will be from O to t, as the curves
are traversed from front to back. To complete the specification of the outer loop,
endcaps must be constructed to join the translated camber curves together, at both
the front and back ends. For the construction of endecaps, it is sufficient to use
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a bicubic curve at each end with the stipulation that function wvalues and tangent
vectors are matched at the joins., It will be assumed that the parameter values are
taken from O to some number T. It is often convenient to set T equal to the periodic
spacing distance. However, this choice is arbitrary. The adjustment to a larger
value of T will only cause the bicubic to bulge out further than before and, in this
regard, the bulge can be used to stretch the coordinates in a similar manner to the
earlier extensions of the camber line. Unlike the extensions of the camber line,
the extensions due to this bulging action have no periodic alignment and only tend
to separate points where upstream and downstream data must be specified. Thus, it
is mich more desirable to stretch the coordinates with only the camber line exten-
sions and not such bulges. Each cubic polynomial ag t gt + aﬂt“ + a?t3 is deter-
mined by a system of the form

§ 00 i R
1 0 0 0 ’ e, i
1 r 3 ay e
0 1 0 0 an ; €
0 1 27 372 5 =
L 4 b J L -

where e and e, are polynomial values at the respective endpoints o and T, and e,
is the slope at o. The system is easily solved to yield the polynomial

et 4 ’:'el-e”) 2 + 2 Cl=Son.d
5 LAVl 1 = TR = 2 (e (12)
For the x-coordinates, the endpoint evaluations are equal due to the vertical align-

ment of the camber lines. Consequently, eg = e; and the polynomial becomes a
quadratic which starts with a slope of e, and ends with a slope of =e,, (see Fig, 12).

In the front e4 plr(o) and in the back % Py (t3) where the decomposition

? (P], P~) has been used. The slope ep is given by the x-component of the direc=-
tion of camber line extension which 1is -7(0) for the front and V(t]) for the
back where V(t) is given by Eq. (4). The negative slope of -e, is needed at T
since the parameter values are increcsing in a direction opposite to the unit
vector which points in the direction of camber line extensions. The y-components
of these slope conditions are used to evaluate the quantity e, for the calculation
of the y-coordinates., The polynomial evaluations for the y-coordinates are given
by e - p?(o), e qz(o) for the front and e, = q?(tg), e; = po(ty) for the back.
Note that the orientation is from bottom to top in front and from top to bottam in
back. This ic done as a matter of convenience so that a clockwise parameterization
can be easily given to the outer loop. The graph of one of the cubie y=-coordinates
is given in Fig. 13. The endcaps are then discretized by a sufficiently fine mesh
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and parameterized by polygonal arc length. When taken with the translated camber
lines the result is a discretized version of the entire outer loop. But one is
still not finished since the parameters must be suitably adjusted to interface wit
the desired mesh point specification for the fluid dymnamic calculation. Suppose
that the computational mesh is to have k periodic points along the translated
camber lines r(t) and q(t), n points along the front endeap not counting juncture
points, and m points along the back endcap also not counting juncture points. The
total computational mesh along the outer loop would then consist of n+2k+m points;
and therefore, that same number of normal liges to the airfoil surface. The para=-
meterization of the translated camber lines p(t) and G(t) is the same and varies
from O to t,. Since these parameterizations will be preserved up to rigid transla-
tions, the interval O to t, is cut into a uniform mesh with k-1 intervals of length
At t,/(k=1). At the front endeap n+l such intervals are needed. Thus, the arc
lencth parameterization of the front endcap must be replaced by a parameterization
from O to (n+1)At which smoothly passes through the juncture points. This is
accomplished by a blend of straight lines from each endpoint with slope determined
by the existing arc length derivative S at those points. This process is illus-
trated in Fig. 1b.

The lines are generated with arc length S as the independent variable which
varies from O to S*, the arc length of the endcap on the front. The slope of each
line is given by the rate at which the camber curve parameter varies with arc
length at the beginning of the camber curve. Thus, one has the two parallel lines

i (13a)

and

P, (8) = =< b (n+l)at
L 5" (o) el (13b)

where SF(Y) is given by Eq. (7). The desired blend must start along Ly, grad-
vally leave £,, and smoothly merge into £4; to end at (S*, (n*1)At). This is
accomplished with a linear homotopy (Ref. 18) between £, and £, with a homotopy
deforming parameter given by the function

LS T (14a)

where

¥ (1)
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with a damping factor D which controls the rate of ascention between the lines.
Usually a value of D which lies between 2 and 3 is quite satisfactory. A graph
of h is given in Fig. 15. The resultant parameterization is then given by the
linear homotopy

t(S) = [1-h(8)] 2,(8) + h(S) zl(s) (15)

which is used to reparameterize the front endcap. Then the parameterization along
the upper curve 4(t) is shifted by the addition of (n+1)At to each parameter value.
The result is a discretized curve with a smooth parameterization covering the front
endcap with parameter values from O to (n+1)at and continuing along the top with
(k-1)at units to end at a parameter value of (n+k)At. At this stage, the endeap

at the back is adjoined, and in the same manner as above, it is reparameterized to
vary smoothly from (n+k)at to (n+k+m+1)At where a juncture occurs with the lower
curve B(t). Then the orientation of the lower curve is reversed by the relabeling
of points so that one has the curve ;((ksnAt-t). The resulting parameterization
for B is next, shifted by (n+k+m+1)At units so that a smooth parameterization is
properly specified for the entire outer loop. The outer loop is given by a discrete
set of points which are parameterized from O to (n+2k+m)At as the loop is traversed
in a clockwise direction. If desired, one can renormalize the parameterization so
that it varies from O to 1. The result of a renormalization is only a rescaling of
the parameterization, At this stage, an application of the least-squares spline
procedure is used to transform the outer loop data into a smooth curve with three
continuous derivatives and the prescribed parameterization. Note that the least-
squares procedure will effectively filter out the small smoothness errors that
occurred when arc length was approximated with the arc length of a polygonal curve.
The small smoothness errors in question appeared as slope information at the juncture
points on each end of the camber curve extensions. Parametric accuracy within the
camber curve is not very important since the periodic alignment of mesh points is not
affected by a slight loss of accuracy within that region. On the endcaps such
aquestions of accuracy would seem more important. However, the construction above
was performed in a manner where the accuracy did not enter into the assignment of
parameter values at the endpoints of any endcap. The only effect then would be in
the specification of slopes for the lines £ and £ (for each endeap) which would
undergo the smoothing of least squares anyhow. Consequently, the alignment of
periodic points will be very accurate.
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The Reparameterization of the Airfoil Surface

Now that the outer loop of the coordinate system is constructed with a suitable
parameterization, one must reparameterize the airfoil surface to align airfoil
parameter values with outer loop parameter values so that corresponding points lie
on the same airfoil normal line. Once the reparameterization has been accomplished,
the coordinate transformation will be given by the cartesian equation

X = RFA)EGL) + [1 - RE2)] BGY) (16)

s
1,x2\ are cartesian coordinates, B is the airfoil contour, is the outer

is a coordinate distribution function along the normals, and y (yl,yz) are
curvilinear coordinates. The coordinate, y2, is the position along normal lines,

and yl is the position around the outer loop which is to be imposed upon the air-
foil surface and hence upon all intermediate coordinate loops. The reparameteriza-
tion is accomplished in a discrete manner. A sufficiently dense uniform mesh is used
to discretize the outer loop parameter; and hence, to create a smooth sequence of
outer loop points with their smoothed parameter values. From each of these points

a normal line must be dropped to the surface of the airfoil. The simplest way to find
the desired airfoil normal line is to locate the point on the airfoil surface which is closest
to the outer loop point in question. For each outer loop point, this distance
minimization problem is always solvable since the airfoil surface is either locally
convex or is locally concave with the centers of the oscillating spheres removed a
sufficient distance beyond the outer loop. This latter result occurred by construc-
tion when a determination was made on the amount to lower the camber line to form

the lower boundary of the coordinate system. When the airfoil point of minimum
distance is located, it is assigned the parameter value of the outer point. The
process is then continued to the next point on the outer loop until all data points
on the outer loop have been used. The result is a discrete reparameterization of

the airfoil surface which can be turned into a smooth curve in either of two ways.
First, the airfoil may be recreated by treating the given airfoil data as raw data
and directly applying the curve fitting routine. If the reparameterization should
cause enough distortion relative to arc length, then it is best to consider a curve
fit to the change of parameter relationship. That is, the second method is to pair
off new and old parameter values in the above process and then to fit the resulting
curve. The reparameterized airfoil is given by the composition with the old para-
meterization expressed as a function of the new parameterization. Consequently,

the airfoil geometry remains invariant in this process and the accuracy and rendi-
tion of airfoil curvature is preserved. Thus, when the original fit to the airfoil
is a good one, the second method is desirable.

where X = (x

Rl

loop,
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An integral part of the reparameterization is the method used to drop the
normals. For reasons of simplicity and stability, the algorithm is based on the
minimization of distance, as indicated above. The outer loop mesh points are con-
secutively taken in the clockwise ordering of the parameterization starting with
the lower juncture point of the front endcap and the lower camber curve. At the
first point, the distance to an airfoil data point within the leading edge region
is computed. Then a search is performed over the existing airfoil data with
cartesian x-coordinates less than the above distance. This criterion limits the
search toa region around the leading edge. The result is a fairly rapid determina-
tion of the existing data point of minimum distance. For an illustration see Fig.

16 where d is the distance to the leading edge region. An arc of radius d and
centered at the first outer loop point a (0) is used to determine the vertical line
tangent to the arc which appears as the dashed line x = g, (0) + d. This vertical
cuts the airfoil into two parts. To the right of the line the points on the airfoil
must be greater than d and hence need not be considered. Thus, the search is per-
formed on the smaller region to the left which contains the leading edge. The
location of the airfoil data point of minimum distance is then used to start the
search algorithm used on the remaining points. The algorithm starts with a known
previous position. For the first point, this position is assumed to be the loca-
tion determined above. For other outer loop points, the previous position is taken
to be the existing airfoil data point just before the point on the airfoil determined
by the normal line dropped from the previous outer loop point. Since outer loop
points are taken in a clockwise order, the previous point on the airfoil is simply
the existing airfoil data point which is nearest to the point in question when dis-
tance is measured only in the couterclockwise direction. From here a distance is
computed and the search over existing data is continued until the measured distance
exceeds the starting distance. This process limits the search of existing data
points to a small region on the surface of the airfoil, and thus, saves computer
time. For an illustration see Fig. 17. The mesh on the outer loop is denoted by a
sequence of dots and the existing airfoil data is denoted by a sequence of x's. The
distance, dy, to the previous airfoil data point is measured along a line (dashed in
the figure) which generally intersects the previous normal line unless the normal
line emanates precisely from an existing airfoil data point. The search is continued
until one reaches a distance, dy, which is greater than the starting distance, dy. In
the illustration, the search would result in the selection of the point of minimum
distance from the first three points pictured. After the distance has been minimized
over the existing airfoil data, the analytic formulation of the airfoil contour is
used to create new data for a refined search in a small neighborhood of the point
determined from the search of existing data. The simplest procedure is to search for
a point of minimum distance over a smaller discretization around the locality in
question, A uniform mesh is placed on the corresponding parameter values so that a
dense enough discretization is obtained between the nearest existing airfoil data
points on either side of the minimum point. If the first point in the search of exist-
ing data is the point of minimum distance, then the mesh refinement need only cover the
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interval from that point to the nearest point in the clockwise direction. This
smaller interval can be used to increfse accuracy or the speed of computation. In
Fig. 17 the first point is displayed ac the point of distance dy. A move in the
counterclockwise direction would only increase the distance; and thus, not contri-
bute to the search for minimum distance. For more accuracy further local refine-
ments could be taken to form a nesting of refinements. However, when the accuracy
is of the same order as the curve fitting accuracy, there is little need to continue
the search to greater perfection. The local search presented here is probably the
crudest of all known techniques. At the expense of extra programming logic more
efficient techniques can be applied. One of the easiest methods to apply is

the method of Hooke and Jeeves'. The search in that method is broken up into a
sequence of exploratory and pattern moves. For details on this and other methods
see the text by J. R. Walsh (Ref. 19). However, for the one dimensional airfoil
surface considered in this application, the payoff of a more efficient optimization
technique is negligible and, in fact, is probably less efficient when the additional
logic has been added. On the other hand, if the natural three dimensional extension
of the coordiante construction presented herein is to be done, then the method of
search is more important and a more efficient optimization technique should %e used.

Distribution Functions

When partial differential equations are discretized in terms of differences,
the derivatives are replaced in some fashion by difference quotients. A simplifi-
cation then leads to the difference equations that we solve. Implicitly in the
discretization, however, is the assumption that derivatives are accurately estimated
by secant lines. But then the exact solution may experience drastic variations in
a short distance. Such solutions are said to have large gradients. In regions
where the gradients are large, the approximation of derivatives by secants may be
very poor unless the particular region is disected into smaller regions whic: have
reasonable secant approximations, a practice commonly knowa as mesh refinement. 1In
fluid mechanics, the boundary layer of a viscous flow around or through an object
is such a region.

Obviously, the necessary resolution could be accomplished by merely increasing
the number of points in a uniform distribution; however, this would require excessive
computer time and storage. Another alternative, known as the interface method, is
to use a refined mesh only in the given region and then join it with the global
mesh. An improved technique is to use coordinate distribution functions which
smoothly distribute mesh points so that in some sense they are spaced in roughly an
inverse proportion to the size of the gradients. Thus, regions of high gradients
have proportionately more points than regions with smaller gradients. Unlike the
interface method, the transition between different mesh lengths is made continuously,
and as gradually as possible. Distributions are often used when the distributional
transformation is applied to an independent variable of an existing transformation.
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The result is a new transformation obtained by composition. With this approach,

the problem of mesh point distribution is replaced by the problem of selecting a
suitable set of distribution functions within a transformation of coordinates. The
problem is a nontrivial one since the distribution functions should depend upon the
nature of the solution being computed but are determined in advance of the computa-
tion. Thus, some prior knowledge of the solution is required. In flows with large
boundary layer separation or with adjacent dissimilar components, the critical
region to be resolved is somewhere in the middle of the flow. BRut the location of
such regions is often unknown at the outset of the problem. One method to overcome
this difficulty in marching procedures is to create the distribution function at the
next level based upon a knowledge of the solution at the present level. Care must
be taken, however, to create a distribution function that is sufficiently smcoth in
the marching direction. In many problems of practical interest, however, the regions
that need resolution are known in advance. Typical examples are attached boundary
layers and boundary layers that may have small separations or separation bubbles.

Within the framework of cascade ccordinate systems boundary layer resolution
on the inner surface is accomplished by setting

Tt 2
R(?) =1+ (2 - 1) tenh [D( -]%b)J el

where a is the estimated boundary layer thickness, b is the desired proportion of
mesh points in the boundary layer, and D is the hyperbolic dampling factor. The
boundary layer growth a gives the fraction of the flow region occupied by the
boundary layer, b is usually taken as a constant, and D can be given a value of
about 2. When y2 is small, the radial distribution of equation (17) reduces essen-
tially to the line

2-a.
R=>_-Y (18)

which would have been chosen had we used the interface method. Asxzzapproaches
unity the distribution Eq. (17) smoothly approaches unity as illustrated in Plg. 18.
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IV, THE GENERATION OF THE NAVIER-STOKES EQUATIONS WITH
THE METRIC DATA FOR CASCADE COORDINATE

The efficient generation of metric data is an important part of any solution
procedure involving general curvilinear coordinates. Before a solution can be under-
taken, the physical problem must be specified. Problem specification, however,
involves the creation of boundary and initial data and the generation of the equa-
tions of motion with the associated boundary conditions. In addition, the solution
may be monitored, examined, or put under physical constraints. 1In all of these
tasks, the metric data is needed. A knowledge of the metric data is enough to com-
pletely specify the equations of motion and analyze the coordinate invariant direc-
tions for the specification of boundary and initial conditions. For very complicated
geometries the equations of motion may contain an inordinate number of terms. How-
ever, if the equations are taken in tensor form, then the coefficients to terms can
be constructed from the metric data with the construction process being performed
on a computer. Once a nontrivial term is constructed, its contribution to the
lesired difference equations is computed before searching for the next nontrivial
term. OSequentially, the process continues until all terms in the equations have
given their contributions to the system of difference equations. Then, in the same
fashion, one cycles through terms in the boundary conditions, sequentially adding
in their respective contributions. The result is the desired set of difference
‘quations, and the problem is effectively reduced to linear algebra. Note that
with such methods there is no real need to write out the differential equations or
omp licated boundary conditions in detail. Thus, all one needs to do is to generate
the metric data and use it.

The coordinate transformation from cascade coordinates into cartesian coordi-
nates is given by Eq. (16) in the previous section. By differentiation of the
coordinate transformation, one obtains the Jacobian transformation which leads
directly to the transformation rules for tensor fields. These rules allow one to
input, monitor, or extract basic information from a solution procedure involving
transformed variables. The Jacobian Transformation is essentially obtained from
the chain rule which yields

= ox axJ Ox axd 4 (19)
e = . B anes p— N snmiiss u 19
I T R T
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where ﬁ] is the standard orthonormal basis of constant vector fields, and e is the

natural basis of tangent vectorec to-coordinate curves. With a sli ght abuse ?I
notation, X has been used as a position vector in the definitiﬂns of PJ and uy.
However, nothing is lost olncn the covariant derivative of X = xJu

A
partial derivative of the xJ summed on uy - In terms of the notation

is just the

A o) A (o}
y=(,) and u=(3) (20)
one has
ax
% oy’
e; = .
| X (21)
oyl
and hence the Jacobian matrix
axl axl
e ol 2
55 ) 62) e
vl 3

In the standard cartesian basig ﬁl the outer loop and the airfoil contour are

expressed in the form @ = uiu and B - pi “1’ respectively. In this notation, the
transformation for cascade geometrlcs is given in component form by the equations

i_ pat - gty 4 gl (23)
for 1 = 1,2, By differentiation the Jacobian transformation is given by
i i i
- dal a8 (24a)
- FR & ] ﬁ.
et (- 20} 20 b
and
e = [ pre- (oA - glH] uy
27
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The metric tensor 8ij is obtained from the differential element of arc length
(ds)? - 8ij dyidyj. From the known cartesian form and an application of the chain
rule, the differential element of arc length is expanded through the sequence of
equalities

B s R g U L g e Lo i
d = dX.dx - (T=; dyl). . ok 2R gyl = (& et igyd
(ds) X sl 43 ) (5;3 ay) 5T 57 dyldy (€] ey) dyldyd (25)

and, as a result, the metric is given by the equation
815 = & - & (26)

'he €.-direction covariant derivative D, of the vector'?i is again a vector
and hence is expressible in terms of the same basis 31, Eb. Specifically,

e =Ine (27)
Ds€5 = 113 “m

where the coefficientsff{ are known as Christoffel symbols. This covariant deri-
vapive measures the rate of change of ej along a coor@inate curve in the direction
of e;. This coordinate curve is an integral curve of ey which is obtained by fixing
all except the ith variable in the transformation.

The assumption will be made that the covariant derivative is the natural one
derivable from the metric. This is known as the Levi-Civita connection (Ref. 20).
The Christoffel symbols for this covariant derivative are given by the formula

km d8gm 3¢mi OEi
kK _ 8 28mj o el (28)
Fig =2 { R I }
where the gkm are elements of the matrix inverse to the matrix of metrics (gij)°

This formula is easily obtained by differentiating 8ij = 6&-3} with respect to ym,
permuting all three of these indices, forming the sum in parenthesis, applying
symmetry to the lower indices of the Christoffel symbols, and then applying the
inverse metric. With some calculation, one can obtain the nonzero Christoffel

symbols directly from the above formula.
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For the automatic computation of the metric data it is convenient to use
forms which are explicitly given in terms of the coordinate transformation and
its derivatives. By a direct expansion of the dot product in Eq. (26) the com-
ponents of the metric tensor become

1
L

513 " by a3 o

o
o
('R

[f A denotes the Jacobian matrix of Eq. (22), thenit is easy to see that the
matrix (gij) is given by

g = det(gyy) = det (A%) = det(a%) det(n) = (aeta)® - & (30

where J is used to denote the Jacobian of the transformation. For nonsingular
transformations J is nonzero and hence both A and (gij) are invertable. Thus, the
inverse metric is obtained from

(@) = (g7 = (A = &1 = )t T

which is converted into components to yield

gkm - 2y Dy (31b)

The Christoffel symbols can now be obtained by a direct substitution into Eq. (28).
This yields the expansion

1 ayk aym aaxl 4 axl aexl
T "2 oF »T | R a0 W STy
aBah  ayh axt  3°xd (32)
M P S et
a2x‘ axt & axt  ¥°xt
Tamyl ) ayl ayToyd
29
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which by cross cancellation collapses into the form
kK _ oyt %ﬁ { at  afh }
= 55 % " oytay! (33)

But the inner two factors are just the product of the Jacobian transformation and
its inverse. Consequently, they may be replaced by the Kronecker symbol 5r£ which
is unity if r = £ and vanishes otherwise. On substitution, the Christoffel symbols
are now given by the simple expression

k ayk 82xz
iy = =T SyTay (34)

which is suitable for automatic computation.

In terms of arbitrary metric data, the governing equations are derived from
the Navier-Stokes equations for the compressible flow of a viscous, perfect gas.
The resulting expressions are given by

% , 2 _ (puivg) =0 (35)
ot axl
for continuity and
[ o) (pulvg) + ac‘jk ™ Ui'j I—-R ) ; %, 0 (36)
3t 3y TR ?
for momentum where
(37)

old = (puit 4+ 113y /g
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and t1J are the components of the stress tensor in the tensor product basis
?35?1. Constant total temperature is assumed, and thus an energy equation is not
requared. The primitive solution variables above are given by a specification of
the stress tensor which in expanded form is given by

; .y -
13 . A ij igj av
4 24 P+ ﬁ( Uk + bk Ej? (588)
where /) ij
M @ M, WM
' f 3y (380)
and
) ied o 4% 8 BT 2% B I P
bk = B (3‘ g 6k g 6k € k ) \ij)

i e
for viscosity p and Kronecker deltas 6j = 6%d = 613

From the ideal gas law and the constant total temperature assumption, the perfect
gas relation has the form

P = Ao + Bpg; juivd (39)

where A and B are constants.

If desired, the momentum equation can easily be put into conservation law form.
When the expression for the Christoffel symbols given in Eq. (34) is inserted into
the momentum equation (36), one obtains

2.1
3 K aodk ij avk  ax -
[a_t (pVg) + 51 axl ayhyl) °k (ko)

A

A change of basis from the curvilinear direction Ek into the cartesian directions
Uy, can be expected to simplify the momentum equation. This is performed by an
application of Eq. (19) which yields

K 2 ¢ A
. x® ax® acr'j ij m 9O x ] u =0 L
_S0.L ’ + + © 6( 0 ( 1)
ot (pe e ) oYk oyl dyroyd
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With the assumption of nonmoving coordinates the Jacobian transformation was
brought through the time derivative. Now the definition of the Kronecker symbol
is applied and the dummy indices i in the last term are replaced by k's. The
result is given by

3 k, ox=® m jk ox® A
o J0 ik 0 X
by (DU /8 ix_— + O — ( - =0
ot ) * E 599 Y N (42)
which, in component form, reduces to the system of conservation laws
3 K, oOx" 3 ik 9
— (pvVeg (o 5
5t oo B oy ( a?‘ ) =0 (43)

For more information on this topic see Refs, 21 and 22

Although the rather formal develpment above provides a specification of a
problem in the cascade coordinate system, it does not provide much insight into the
metric structure which is needed to interpret results and to properly apply boundary
conditions. For this reason the metric will be derived in terms of the basic geom-
etric parameters of the cascade. Once this is done, correlations between the
metric structure and the underlying coordinates can be made. It is first observed
that the cascade coordinate transformation (16) can be broken down into two basic
parts. Since a - B is a nontrivial normal vector pointing from the airfoil B to

the outer loop o, its magnitude d —’I a - BII is a measure of the distance across
the coordinate system in the direction given by the outward unit normal vector from
the airfoil. However, the outward unit normal is given by both

A - n‘g——ﬁrrr (bb)

and the Frenet formulas on the airfoil contour. For the airfoil contour a unit
tangent vector ; is given by § = § Dlﬂ where S is the yl - derivative of arc length
along the airfoil. Upon successive differentiation one obtains the Frenet formulas

4>
1]
(2]
=
o>

: (45)
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where ¢ = -1 on convex parts of the airfoil and ¢ = 1 on concave parts. At
inflection points, however, the formulas do not exist. For a derivation of the
formulas one may consult a text on diffefential geometry (Ref. 20). Consequently,
the coordinate transformation can be written in the form

f=Ran+7T (46)

with the unit normal vector given by either of the above specifications. At non-
irflection points the latter specification shall be used so that the Frenet formulas

can be employed to some advantage. Since the coordinate transformation is constructed

from functions each of only one variable, derivatives of these functions can be
denoted with a dot and result in no ambiguities. 1In this notation, the transforma-
tion (46) is differentiated to obtain the natural basis of tangent vectors to coor-
dinate curves., From an application of the Frenet formulas the result becomes

. A . ‘
@ =Rdn +S (1 - ciRd) 7
(47)
i A
e =Rdn

S

A
For an illustration of the vector relationships see Fig. 19. Since the vectors T
and h are orthonormal, the metric is readily obtained from a direct substitution
into the equation gjj = €j ¢ €j. The result is given by

® 9

g8, = (RA) + [5 (1-cKRd)J?

§a (48)
gop = (R a)?
and from the determinant of this metric one obtains the Jacobian
J= g =daRS (1l-cKrd). (49)

The magnitude of the Jacobian, however, is a measure of the relative scaling of
coordinate volume elements throughout the domain of the transformation. If the
Jacobian is zero at a point, then the differential volume eclement there is zero and
the transformation is singular. Since the Jacobian is a continuous function, one
may also examine the coordinates as a singularity is approached. With the cascade
coordinates presented herein, a singularity can occur only if one of the factors in
the expression of the Jacobian should vanish. However, each of these pgssibilities
will lead to an unreasonable system of coordinates. The factors R and S can be
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eliminated from consideration since both R and § must be given by strictly monotone
functions; and therefore, cannot vanish. A lack of monotonicity here would cause
the coordinates to locally double back upon themselves; and thus, render local
regions where the coordinates are not uniquely defined. This leaves one with two
possible factors that could vanish. First, if d should vanish, then the airfoil
surface and the outer loop would coincide at the point or points in question. As
the points of coincidence are approached, the coordinate loops are then smoothly
compressed into a region of zero cross section, An illustration of this type of
singularity is given in Fig. 20. The second possibility for a sigularity would occur
if the last factor (1-cKRd) should vanish. This, however, could only occur in the
region of a concave part of the airfoil since otherwise the factor is the sum of
positive quantities. But in the region of a concave part of the airfoil, the
centers of the osculating spheres were sent outside of the coordinate system by
construction. The analytic implication is that Kd « 1 and hence the factor cannot
vanish.

'he rate of change along coordinate curves is measured by the covariant
derivatives of the natural coordinate tangent vectors. 1In this regard, the
Christoffel symbols contain the desired information., For example, an application
of the covariant derivative Do to €, yields

— o A Sy

Doy @y ™ Beodi el e S (50)

R

and hence the Christoffel symbols

1%, = 0 a r2, =R (51)

22 = = e n v

R
by observation from equation (27). This result is also partially evident from the

basic geometry. The curves of constant yl are just the normal lines; and hence,
any variation of their tangent vectors must be in magnitude only. This conclusion
is born out from the analytic fact that r12 vanishes. In the special case of a
uniform distribution of loops, the function R is given by R = yg. The second deri-
vative vanishes with the result that rgz also vanishes. Then Dzéé = 0 which
implies that € is constant along its normal line. Another example is given by
coordinates with a region where d is constant. 1In that region, the natural tangent
vectors to coordinate curves are given by

€ = s (1-cKRd) 7 (52)
& =Rah
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which are clearly orthogonal. The covariant derivative Do of €1 is given by

f xﬁd A SEhRd (53)
e - = : >
271 oyl 5(1-ckrd) ©1
and hence the Christoffel symbols
£ -cKRd p) )
*21 . tas g - and 1 e gt =0 (54)
: S(1=-cKRd) 21 12

are cbtained from Eq. (27), as before.

The result is again geometrically reasonable since the loopwise coordinate

tangent vectors must all be parallel along a normal line. If in addition, the
region were to contain the effect of a linear segment embedded in the airfoil sur-
face, then the Christoffel symbols ri2 and r; would vanish and D2€1= 0. The
coordinates would then be locally cartesian. lFurther, calculations and interpreta-
tions of the nature presented here can be done for the remaining Christoffel symbols.
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’ RESULTS

To evaluate the algorithm for the generation of cascade coordinate systems
described in the previous sections, & suitable test case was devised. The chief
criterion was to obtain a test case which was complicated enough to simulate a real
cascade, and yet specialized enough so that comparisons could be made with known
geometric parameters. Since most real cascades are known to be composed of highly
cambered airfoils, it was required that the test case would be for a cascade with
a highly bent airfoil. In addition, since the cascade cocrdinates are generated
from raw data, the test case was constrained to a problem where the airfoll curvature
was known. In this way the geometric representation of the airfoil could be evaluated
for accuracy in both location and curvature. Since cirecles are curves with known
constant curvature, it was reasonable to construct the airfoil in the test case with
circular arcs. Then with the exception of transitional regions near the junctures
between consecutive arcs, the curvature could be compared with curvature of the
underlying arc. With the above criteria, the airfoil was constructed from two
concentric arcs of slightly different radii which were closed by smaller circular
arcs attached to each end. An illustration is given in Fig. 21.

The two concentric arcs were constructed with an inner radius Ry and an outer
radius R,. The center point was taken at X, = O and the arcs extended through
angles from n/4 to 3n/4 radians. To form a closed loop smaller arcs of radius r =
(Rg - Rl)/E were attached to either end. These arcs were centered at the cartesian
locations (*x, x) with x = (Ry + r)//2. To express the data in terms of vertical
slices the airfoil was subdivided into five regions where a unique analytic descrip-
tion was available. The regions are marked off by the dashed vertical linecs in the
figure. At either end the verticals through the intervals [xg, X;] and [x7, X6) cut
the airfoil contour on only the small circular arcs. At the next inner most intervals
(%3, X5) and (X6 XS) the bottom part of the airfoil contour is given by the small
circular arcs and the top is given by the outermost circular arc of radius Ry. The
centered interval [XS’ x3) leads to verticals which cut only the two concentric
circular arcs of radii Ry and R,. The locations of the interval endpoints are
readily determined to be

X =r+A X, = =X
b g
R .
op T o i (55)
XS = 5_]_-_ X)‘ = _XS
7 '
where A = (R + r)//2.
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On the small endecap arcs a local specification of angular position is given.
This is illustrated by the angle & in the figure. Positions along the concentric
arcs of radii Ry and R, are given by the angular positions 8y and 8, respectively.
The only constraint is to vertically align the data. For notational convenience
let u(x) denote the upper surface and g(x) denote the lower surface. Then from the
figure one has

X = =A + r cosa
L= A-r sing (56a)
n= A+r sing
r ] A g 5’7
on [x , x.] for ms g s+,
S | L
X = =-A + r cosa
£ = A -7 ging
=1 (56b)
0, =cos  {[-A+r cosa}/Rp]
w =R_sing
) IR Tm
on ;xg. x. ) for 5 <gs s
X = R cosb
1 i
¢y = R. sin® {56¢
% 1 (9he)

-1
u =R, sin {cos ~ (

)
[ =

o

= cosfq)}

on [xs, x3) for E < 81 < %;, and a similar treatment for the remaining intervals.

When the endcap angles g and the angle el for the inner concentric arc are discretized
by a uniform mesh the result is a collection of vertical slices which discretely
define the airfoil contour. For the test case the central interval x, <x < Xg was

3
l 3n 3
artitioned by 29 verticals determined by 64 = %r - AB - 270 ces, == = 208
Pﬂ y 29 pA Al’ L Al’ ’ 9’\1

L
i where A8; = n/60. The other intervals X, <x < X, for 1 =1, 2, 5, 6 were

similarly partitioned with 9 verticals apiece resulting from subdivisions of the
angles ¢ on either endcap., In addition, a vertical slice was added at Xy. For
simplicity in the interpretation of results, the inner radius Rl was given a value
of unity. This gave the concave part of the airfoil a curvature of unity. Again,
for reasons of simplicity, the outer radius was given the value of 1.2 so that the
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radius of the smaller endcap arcs would be r = ,1 and thus the curvature there would
be exactly 10. Coordinate stretches were specified by setting camber curve exten-
sions of .5 in the upstream direction and .7 in the downstream direction. The inner
part of the camber curve was, for simplicity, given as vertically averaged data
with a specification for a very accurate fit. Next, the periodic spacing of
airfoils was given a value of 3/4, The scaling of the coordinates should taen be
roughly 3 units across and 1 unit high. Consequently, on the average absolute errors
should be about twice as large as relative errors. The number of computational

mesh points on the outer loop was set by choosing 20 periodic points above and below
the airfoil and 5 points on both the upstream and downstream endcaps. The radial
distribution was set for a boundary layer region to occupy one quarter of the
distance from the airfoil to the outer loop and to be resolved with one half of

the mesh points. For aesthetic reasons, 7 radial points were chosen so that there
would be 5 inner coordinate loops. The computation time for the calculation was
slightly less than 30 seconds on a UNIVAC 1110. This compares favorably with other
methods of computation and is, in fact, faster than most. Since the purpose of the
present study was to obtain an accurate construction of cascade coordinate systems,
little attention was actually paid to computational efficiency in terms of computer
time. Consequently, with a little effort the computer time could be decreased even
further. A graph of the results appears in Fig. 22, The airfoil contour was fit
with 2 maximum absolute error of 4 x 1073 in the location of points. The curvature
along the concentric arcs were generally accurate to within two or three digits
while the larger curvature regions on the leading and trailing edges were accurate
to within only one or two digits. As expected the camber data was accurately fit
with a maximum absolute error of 2 x 1073, As a result the linear data on the ends
of the circular caps caused the camber curve extensions to leave the airfoil as
straight lines parallel to the x-axis. The periodic alignment for periodically
matched points was generally accurate to three decimal places and in some places had
even grester accuracy. Certainly szuch excellent results cannot be visnallydiscerned
from the graph itself. However, it can be observed that the lines from the airfoil
to the outer loop are for all practical purposes normal to the airfoil and again
the result is in excellent agreement with the theory. Also the radial distribution,
as expected, properly distributed the 5 inner loops.
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FIGURE 1: INPUT DATA FOR THE AIRFOIL CONTOUR

FIGURE 2: BOUNDARY LAYER COORDINATES
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FIGURE 4: SINGULARITY FROM INTERSECTING NORMALS
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FIGURE 5: DETERMINATION OF THE LOWER COORDINATE BOUNDARY
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FIGURE 6: A COORDINATE SYSTEM WHICH IS NEAR THE CENTER
OF AN OSCULATING SPHERE
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FIGURE 7. DISCRETE NORMAL VECTOR FIELD ALONG AIRFOIL SURFACE
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\-CENTER OF OSCULATING SPHERE

FIGURE 8: THE VERTICAL DISTANCE FROM THE BOTTOM OF THE AIRFOIL
TO THE CFNTERS OF THE OSCULATING SPHERES
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FIGURE 9: ARC LENGTH FUNCTION FOR EXTENSION IN FRONT
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FIGURE 10: ARC LENGTH FUNCTION FOR EXTENSION IN BACK

AIRFOIL

CAMBER CURVE
EXTENSION OF
F UNITS IN FRONT

CAMBER CURVE
EXTENSION OF
B UNITS IN BACK

END CAP

AP
- . IN BACK

IN FRONT

CAMBER
CURVE

\- ENDPOINTS OF VERTICALLY /

TRANSLATED CAMBER CURVE

FIGURE 11: THE CONSTITUENT PARTS OF THE OUTER LOOP
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FIGURE 13: CUBIC Y—-COORDINATE
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FIGURE 15: HOMOTOPY PARAMETER
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FIGURE 17: CRITERION TO LIMIT THE SEARCH OF EXISTING AIRFOIL DATA

_— o
0

FIGURE 18: DISTRIBUTION FUNCTION FOR THE MESH ALONG THE NORMAL LINES
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FIGURE 19. INTRINSIC PARAMETERS FOR THE CASCADE COORDINATE SYSTEM
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FIGURE 20: COORDINATE SINGULARITY FROM LOCAL COOINCIDENCE
OF THE AIRFOIL AND THE OUTER LOOP
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FIGURE 21: CASCADE AIRFOIL FOR TEST CASE
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